

UNIT -I
PRINCIPLES OF SURVEYING AND CHAIN \& COMPASS SURVEYING

1	a	Briefly explain the principles of surveying?			[L2][CO1]	[6M]
	b	Define surveying and brief about the primary divisions of surveying.			[L1][CO1]	[6M]
2	Explain in detail the classifications of surveying.				[L2][CO1]	[12M]
3	a	What are the duties of a surveyor?			[L1][CO1]	[6M]
	b	Write short notes on types of errors.			[L1][CO1]	[6M]
	a	Briefly explain the various accessories (any three) in chain surveying.			[L2][CO1]	[6M]
4	b	A steel tape was exactly 30 m long at $20^{\circ} \mathrm{C}$ when supported throughout its length under a pull of 98 N . A line was measured with this tape under a pull of 147 N and at a mean temperature of $32^{\circ} \mathrm{C}$ and found to be 780 m long. The cross-sectional area of the tape $=0.03 \mathrm{~cm}^{2}$, and its total weight $=6.8 \mathrm{~N}$. For steel, $\propto=11 \times 10^{-6}$ per ${ }^{\circ} \mathrm{C}$ and E for steel $=20.58 \times 10^{6} \mathrm{~N} / \mathrm{cm}^{2}$. Compute the true length of the line if the tape was supported during measurement at every 30 m .			[L3][CO1]	[6M]
5	What are the different tape correction and how they are applied?				[L1][CO1]	[12M]
6	Explain briefly the obstacles of chaining of a line with neat sketches.				[L2][CO1]	[12M]
7	With neat sketch, explain the prismatic compass by indicating their parts.				[L2][CO1]	[12M]
8	The following bearings were observed in running a closed traverse. At what stations do you suspect local attraction? Find the correct bearings of lines and also compute the included angles.				[L4][CO1]	[12M]
		LINE	FORE BEARING	BACKBEARING		
		AB	$71^{\circ} 05^{\prime}$	250 ${ }^{\circ} 20^{\prime}$		
		BC	$110^{\circ} 20^{\prime}$	$292^{\circ} 35^{\prime}$		
		CD	$161^{\circ} 40^{\prime}$	$341^{\circ} 40^{\prime}$		
		DE	$220^{\circ} 50$ '	$40^{\circ} 05^{\prime}$		
		EA	$300^{\circ} 50$	$121^{\circ} 10^{\prime}$		
9	a	Write short notes on dip and declination.			[L1][CO1]	[6M]
	b	What is local attraction and how it is detected and eliminated?			[L1][CO1]	[6M]
10	a	Differentiate between prismatic and surveyor compass.			[L2][CO1]	[6M]
	b	Make a note on bearing and meridian.			[L1][CO1]	[6M]

UNIT -II
 LEVELING AND CONTOURING

1	a	Write short notes on methods of leveling.								[L1][CO2]	[6M]
	b	Briefly explain the temporary adjustment of leveling.								[L1][CO2]	[6M]
2	a	Write short notes on errors in leveling								[L2][CO2]	[6M]
	b	Discuss the effects of curvature and refraction in leveling.								[L2][CO2]	[6M]
	a	Describe in detail how you will proceed in the field a profile leveling.								[L2][CO2]	[6M]
3	b	In leveling between two points A and B on opposite sides of a river, the level was set up near A and the staff readings on A and B were 2.642 m and 3.228 m respectively. The level was then moved and set up near B, the respective staff readings on A and B were 1.086 m and 1.664 m . Find the true difference level of A and B.								[L4][CO2]	[6M]
4	The following staff readings were observed successively with level, the instrument has been moved forward after the second, fourth and eighth readings: $0.875,1.235$, $2.310,1.385,2.930,3.125,4.125,0.120,1.875,2.030$ and 3.765 . The first reading was taken with the staff held upon a benchmark of elevation 132.135 m . Enter the readings in level book-form and reduce the levels. Apply the usual checks. Find also the difference in level between the first and the last points.									[L4][CO2]	[12M]
5	The following consecutive readings were taken with a dumpy level and 4 m leveling staff on a continuously sloping ground at common intervals of 30 m 0.905 (on A), $1.745,2.345,3.125,3.725,0.545,1.390,2.055,2.955,3.445,0.595,1.015$, $1.850,2.655,2.945$ (on B). The RL of A was 395.500 m . Tabulate the page of field book and calculate the levels of the points.									[L4][CO2]	[12M]
6	The following readings have been taken from a page of an old level book. It is required to reconstruct the page. Fill up the missing quantities and apply the usual checks.									[L3][CO2]	[12M]
		Station	BS	IS	FS	Rise (+)	Fall (-)	RL	Remarks		
		1	3.125					?	B.M		
		2	?		?	1.325		125.505	CP		
		3		2.320			0.055	?			
		4		?		?		125.850			
		5	?		2.655		?	?	CP		
		6	1.620		3.205		2.165	?	CP		
		7		3.652			?	.			
		8			?			123.090	T.B.M		
7	a $\begin{aligned} & \text { Write short notes on difficulty in leveling. }\end{aligned}$									[L1][CO2]	[6M]
	b ${ }^{\text {d }}$ Discuss about the interpolation of contour.									[L2][CO2]	[6M]
8	Define contour. State the various characteristics of contour lines.									[L1][CO2]	[12M]
9	What are the indirect methods of locating a contour? Write about any two methods.									[L1][CO2]	[12M]
10	a \quad Mention the uses of contour in civil engineering works?									[L1][CO2]	[6M]
										[L2][CO2]	[6M]

UNIT -III
 THEODOLITE AND TACHEOMETRIC SURVEYING

UNIT -IV

CURVES

	a	,	[L	[7M
1	b	Define degree of curve. Derive a relation between the radius and degree of a curve.	[L2][CO5]	[5M]
2	Explain the various elements of a simple curve with a neat sketch.		[L2][CO5]	[12M]
3	a	Define and draw a typical compound curve. Under what circumstance compound curves are provided.	[L2][CO5]	5M]
	b	D		
4	Mention the various methods of setting out of simple curve. Explain with sketch offsets from long chord method in detail.		[L2][CO5]	[12M]
5	With sketch, explain in detail any one method of curve setting by offset from the tangent method.		[L	[12M]
6	Describe with sketch the method of setting a simple circular curve by Rankine's deflection angle method.		[L2][CO5]	[12M]
	a	Draw a neat sketch of reverse curve and explain it.	[L2][CO5]]
7	b	Briefly explain the field procedure of setting out of curve by two theodolite methods.	[L2][CO5]	[7M]
8	Two tangents intersect at chainage 1250 m . The angle of intersection is 150°. Calculate all data necessary for setting out a curve of radius 250 m by the deflection angle method. The peg intervals may be taken as 20 m . Prepare a setting out table when the least count of the Vernier is 20 ". Calculate the data for field checking.		[L4][CO5]	[12M]
9	Two straight lines AC and CB, to be connected by a 3^{0} curve, intersect at a chainage of 2760 m . The WCBs of AC and CB are $45^{\circ} 30^{\prime}$ and $75^{\circ} 30^{\prime}$ respectively. Calculate all necessary data for setting out the curve by the method of offsets from the long chord.		[L4][CO5]	[12M]
10	A compound curve is made up of two arcs of radii 380 m and 520 m . The deflection angle of the combined curve is 105° and that of the first arc of radius 380 m is 58°. The chainage of the first tangent point is 848.55 m . Find the chainage of the point of intersection, common tangent point, and forward tangent point.		[L4][CO5]	[12M]

UNIT -V

ELECTRONIC DISTANCE MEASUREMENTS AND TOTAL STATION

1	a	List out and explain the properties of EM waves.	[L2][CO6]	[6M]
	b	State and brief about transit time.	[L1][CO6]	[6M]
2	a	Explain in detail about the infrared type	[L2][CO6]	[6M]
	b	Write short notes on total stations.	[L1][CO6]	[6M]
3	Explain with sketch the principle of EDM instrument.		[L2][CO6]	[12M]
4	Briefly explain the types of EDM instrument.		[L2][CO6]	[12M]
5	How will you measure the horizontal angle and vertical angle by using total station?		[L1][CO6]	[12M]
6	Describe in detail about the following EDM instruments. (i) Microwave instrument (ii) Visible light instrument.		[L2][CO6]	[12M]
	a	Explain about AM and FM modulation.	[L2][CO6]	[6M]
7	b	What is modulation? Explain the necessity of modulation.	[L1][CO6]	[6M]
8	Explain in detail about the Wild T-1000 Electronic Theodolite.		[L2][CO6]	[12M]
9	Describe with sketch, the fundamental measurement of angles and distances by total station.		[L2][CO6]	[12M]
10	a	Discuss about the various model available in total station.	[L2][CO6]	[6M]
	b	Write short notes on Global Positional System.	[L1][CO6]	[6M]

Prepared by:
Dr.G.Prabhakaran
Professor/Civil

